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We consider a general system of coupled nonlinear diffusion equations that are characterized by having
degenerate source terms and thereby not having isolated rest states. Using a general form of physically relevant
source terms, we derive conditions that are required to trigger traveling waves when a stable uniform steady-
state solution is perturbed by a highly localized disturbance. We show that the degeneracy in the source terms
implies that traveling waves have a number of surprising properties that are not present for systems with
nondegenerate source terms. We also show that such systems can lead to a pair of waves that initially propagate
outwards from the disturbance, slow down, and reverse direction before ultimately colliding and annihilating
each other.
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I. INTRODUCTION

Since the pioneering works of Hodgkin and Huxley �1�
and of Turing �2� in 1952, nonlinear diffusion models have
been studied extensively in the context of many different
biological, chemical, and physical phenomena. Biological
applications occur quite often because of diffusion effects
coupled with chemical or other nonlinear “reaction” terms.

In many different applications, highly localized distur-
bances of a stable rest state, e.g., large local increases in
chemical or population concentrations, can lead to wave
propagation. Specific examples include equations for excit-
able systems, e.g., the Hodgkin-Huxley equations �1� de-
scribe how the electrical potential across membranes of
nerve cells and a large current input can lead to a depolar-
ization of the potential above a threshold, thereby generating
an “action potential” wave. Another example is a wave of
spreading cortical depression �3�, an experimental slow wave
phenomenon that occurs in the cortex of various brain struc-
tures in a variety of animals. These waves are instigated by
injecting a bolus of potassium chloride into the cortex. Epi-
demics of disease also exhibit similar phenomena.

In this paper, we consider a class of coupled nonlinear
diffusion equations that are characterized by not having iso-
lated rest states, i.e., the rest states are not unique and depend
continuously on one or more parameters. This can arise as a
consequence of having locally conservative source terms.

We will study a coupled system of two nonlinear diffusion
equations for quantities u and v. Without loss of generality,
we rescale the time t, space x, and the population v such that
the diffusion coefficient for u is unity, and the absolute mag-
nitudes of the nonlinear source terms, g�u ,v�, are equal

ut = uxx + g�u,v� , �1�

vt = Dvxx − g�u,v� . �2�

Here, D is the diffusion coefficient for v. We consider the
evolution of u and v on the real line, −� �x��. Although

the quantities u and v can represent the evolution of a broad
range of biological and physical variables that may take
negative values, we will refer to them as “populations.” We
will assume that the function g is continuous and has the
property that in the absence of diffusion, any initial state will
not grow unboundedly. This is clearly a precondition for the
model to be realistic. For simplicity, we also will assume that
the curve g�u ,v�=0 represents a single continuous curve,
although more complicated situations can be considered us-
ing a similar approach to that taken in this paper.

Our goal is to understand the dynamics of the solution
when a stable homogeneous steady state of such a system is
subjected to an instantaneous, large amplitude, and highly
localized perturbation in one of the populations. One might
imagine that such perturbations could lead to traveling
waves, but the nonuniqueness of the rest states raises a num-
ber of questions. Under what conditions can a traveling wave
be triggered, and if a traveling wave solution develops, then
to what rest state does the tail of the wave approach?

There is an extremely wide set of problems where this
situation of nonunique rest states occurs, and we give two
simple biological examples. The first example is associated
with epidemics of nonfatal diseases. There is a mathematical
formulation of this problem called the SIS model �see, e.g.,
Keshet �4��. Here S represents the number of susceptible
people in the population, and I represents the number of
infected people in the population. This model assumes that
infected individuals can recover from the infection, but there
is no long term immunity from reinfection at a later time.
The model equations are given by

�S

�t
= DS

�2S

�x2 − rSI + bI , �3�

�I

�t
= DI

�2I

�x2 + rSI − bI . �4�

The diffusion rates DS and DI are different with DS�DI
since infected individuals are assumed to be less mobile than
healthy individuals. The parameter r is the infection rate per
number of susceptible individuals per infected individual per
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unit time. Thus rS individuals are infected by one infected
individual per unit time. The parameter b is the rate at which
infected individuals recover and return to the susceptible
class.

The only condition on the rest state, �S0 , I0�, is
f�S0 , I0 ;r ,b��rS0I0−bI0=0. Thus there is a family of rest
states that depends continuously on one parameter. Suppose
a spatially uniform state that is stable to small perturbations
is perturbed by placing a large number of infected individu-
als into a highly localized region. A natural question to con-
sider is how this localized outbreak will evolve and to what
state the system will ultimately evolve.

The second example is a model for spreading cortical de-
pression �SD� derived by Tuckwell and Miura �TM� �5�. Al-
though the TM model is greatly simplified, the issue of the
nonunique rest states is clearly illustrated in this case. The
phenomenon of SD is a slowly propagating chemical wave
�primarily potassium� in the cortex of many different brain
structures and in many different animals �3�. The simplified
model system in one space dimension involves only two ion
populations, namely potassium �K� and calcium �C�, and is
given by

�Ko

�t
= DK

�2Ko

�x2 + F�Ko,Ki,Co,Ci� , �5�

�Ki

�t
= − �F�Ko,Ki,Co,Ci� , �6�

�Co

�t
= DC

�2Co

�x2 + G�Ko,Ki,Co,Ci� , �7�

�Ci

�t
= − �G�Ko,Ki,Co,Ci� , �8�

where Ko ,Ki ,Co ,Ci are the extracellular and intracellular
concentrations of potassium and calcium, respectively, DK
and DC are the diffusion coefficients for potassium and cal-
cium in aqueous solution, respectively, and the functions F
and G are highly nonlinear terms representing membrane
ionic currents and ion currents due to metabolic pump terms
that move ions against their electrochemical gradients. The
additional parameter � accounts for the difference between
the intracellular and extracellular volumes.

The rest states for the four variables Ko ,Ki ,Co ,Ci in this
model are determined only by the two equations
F�Ko ,Ki ,Co ,Ci�=0=G�Ko ,Ki ,Co ,Ci�. Thus there is a two-
parameter family of rest states. Experiments often involve
triggering a wave by injecting a highly localized source of
potassium ions into the brain. Again, the natural question to
ask is to what state will the system eventually evolve and
under what conditions could a localized stimulus lead to a
permanent change in the ion composition in the brain.

Systems in which bistable switching occurs for source
terms that are not symmetric have been widely studied. In
certain parameter regimes, the Fitzhugh-Nagumo equations
have two stable states, and there exists an extensive literature
that studies traveling wave fronts of these equations �see, for

example, Rinzel and Terman �6��. The existence of bistable
switching wave fronts with zero velocity has been consid-
ered by Sepulchrea and Krinsky �7�. In addition, Pazo and
Perez-Munuzuri �8� considered traveling wave fronts in
coupled arrays. However, despite the obvious importance of
systems with symmetric source terms, to our knowledge,
there has been surprisingly little work. Most of the pioneer-
ing work for these systems has been developed for a two-
variable model �u and v� in which the source term g�u ,v� is
proportional to uv. This model was proposed by Kawasaki et
al. �9� in the context of patterns generated by the bacterium
Bacillus subtilis. The focus of previous work has been on the
type of traveling waves that can arise when an unstable rest
state is perturbed �by a possibly infinitesimal disturbance�
and is replaced by a stable rest state for this system. Billing-
ham and Needham �10�, Merkin and Needham �11�, and
Merkin et al. �12� proved a very broad range of results for
the case D=1 and Satnoianu et al. �13� have done likewise
for D=0.

In contrast, we examine the case where a stable rest state
is perturbed by a highly localized disturbance and determine
under what conditions traveling waves can replace the initial
stable rest state with a different stable rest state. We consider
a very general form of the source term and derive a number
of results that throw significant light on the behavior that can
occur in such systems. By making a number of reasonable
assumptions about the source terms, we consider what prop-
erties are required to generate traveling waves. We determine
a number of conditions that must be satisfied in order for the
initial disturbance to propagate outwards and evolve into a
pair of traveling waves. It is well-known that coupled
reaction-diffusion equations with nondegenerate source
terms can have traveling waves that exist for a continuous
range of wave speeds. In contrast, we show that for degen-
erate source terms, traveling waves can only occur for dis-
crete values of the wave speed. We show that traveling
waves can abruptly cease to exist as the diffusion coefficient
D is varied and that the widely studied case of D=1 is a
special case in the sense that it is the only value of the dif-
fusion coefficient for which stationary waves can exist.

In Sec. II, we show how the initial condition reduces the
continuous family of rest states to a discrete set of rest states.
In Sec. II A, we consider the nature and stability of these
states and show how diffusion can destabilize the solutions.
In Sec. III, we consider the initial evolution of large ampli-
tude perturbations. By making detailed estimates of the dif-
fusion and source terms in the model, we determine the con-
ditions that are required to trigger a traveling wave. In Sec.
IV, we determine the properties of traveling waves, including
conditions leading to the direction of propagation and deter-
mination of the population mass contained in a traveling
wave. We also consider a specific example, for which some
analytical solutions can be derived, and we use these to un-
derstand how the diffusion coefficient can affect traveling
waves. In Sec. IV C, we consider the process of establishing
a traveling wave after a triggering event. We show that under
certain conditions, a triggering event will lead to traveling
waves, but under other conditions a triggering event can lead
to a wave which initially propagates outward, continuously
slows down until it eventually stops, reverses its direction,
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and ultimately collides with its mirror image and is annihi-
lated. Finally, in Sec. V, we give a discussion and interpre-
tation of our results and, in some cases, provide suggestions
for experimentally determining whether propagating waves
can occur and what types of initial disturbances are required
to trigger them.

II. SPATIALLY HOMOGENEOUS STEADY STATES

The local conservation condition for the system �1� and
�2� implies that there is a one-parameter family of possible
steady states along the curve given by g�u ,v�=0. However,
for spatially homogeneous solutions, the diffusive terms are
zero, and hence the addition of the two equations imply that
the quantity u+v must be conserved. Therefore solution tra-
jectories must move along lines of constant u+v. The value
of the constant depends on the initial state of the system at
each x. If we ignore the nongeneric case in which the curve
g�u ,v�=0 is parallel to the line u+v�constant over a finite
length, then the one-parameter family of steady states is re-
duced to isolated steady states corresponding to the intersec-
tions of the g�u ,v�=0 curve and the line u+v�const.

The diffusion terms simply redistribute populations in
space, and therefore we also have a global conservation of
total population. Taking the reference values of u and v to be
zero at infinity, adding Eqs. �1� and �2�, and integrating over
all space, we obtain

d

dt
�

−�

�

�u + v�dx = 0.

Integrating with respect to time and applying the initial con-
ditions, we obtain

�
−�

�

�u + v�dx = K , �9�

where K is the total population deviation from the values at
infinity.

We will consider a spatially uniform rest state that is per-
turbed by a localized disturbance. Without loss of generality,
we take the unperturbed rest state to be �u ,v�= �0,0�. After
an excitation is introduced, we wish to determine the final
state to which the system evolves. Although there is a one-
parameter family of possible rest states, given by g�u ,v�=0,
most of these states have a value of u+v that is not zero. If
we consider solutions that are independent of x, then states
with nonzero u+v cannot occur since they would cause the
integral in Eq. �9� to diverge. In fact, any uniform solution
must spread the initial population K over the entire real line,
and so the value of u+v must be the same as the initial zero
rest state. This implies that the only possible spatially uni-
form long-term rest states correspond to the intersections of
the curves g�u ,v�=0 and u+v=0. In general, these condi-
tions will be satisfied at a set of discrete points. In particular,
if �u ,v�= �0,0� is the only solution of g�u ,v�=0 and u+v
=0, then this represents the only possible rest point. If we
also consider traveling waves, then a similar argument shows
that the tails of the traveling waves also must tend to one of

the states that represents a solution of g�u ,v�=0 and u+v
=0.

A. Stability of spatially homogeneous states

We consider stability of the steady state �u ,v�= �u0 ,v0� by
adding perturbations of the form

�u,v� = �u0,v0� + �ũ, ṽ�eikx+�t.

After substitution into Eqs. �1� and �2� and linearization in ũ
and ṽ, we obtain

�ũ = − k2ũ + gu0ũ + gv0ṽ ,

�ṽ = − Dk2ṽ − gu0ũ − gv0ṽ ,

where gu0 and gv0 are the first-order partial derivatives of g
evaluated at �u0 ,v0�. These equations yield the following ei-
genvalue equation for �:

�2 + �gv0 − gu0 + �1 + D�k2�� + k2�Dk2 − Dgu0 + gv0� = 0.

If the perturbations are spatially uniform �k=0�, then the
eigenvalues are gu−gv and 0. In this case, the diffusive terms
play no role and so the trajectories of Eqs. �1� and �2� are
confined to the lines u+v�const. The �=gu−gv eigenvalue
corresponds to perturbations of the system along the line
u+v�const. The zero eigenvalue corresponds to perturba-
tions that are not parallel to the line u+v=const and, there-
fore, represent changes in the initial population at each point.
Such perturbations are neutrally stable because trajectories
are confined to lines of constant u+v, and therefore such
perturbations can neither decay back to the original state nor
grow.

When diffusion is present �k�0�, stability requires that
gv0−gu0+ �1+D�k2�0 and Dk2−Dgu0+gv0�0 for all values
of the wave number k. For sufficiently large wave numbers,
these conditions are automatically satisfied. Since our system
is on an infinite domain, the wave number can take infini-
tesimal values. Therefore the stability constraints become
gv0�gu0 and gv0�Dgu0. The first constraint is the same as
the stability constraint in the absence of diffusion and en-
sures stability of a rest point along a line of constant u+v.
The second constraint ensures that diffusion does not desta-
bilize the neutrally stable eigenvalue that exists in the ab-
sence of diffusion via a long-wavelength �small values of k
represent the fastest growing modes� Turing instability. The
presence of D in this constraint essentially means that there
is only one constraint, namely gv0�gu0 if 0�D�1 and
gv0�Dgu0 if D�1.

III. INITIAL EVOLUTION OF DISTURBANCES

We consider an initial condition that is a perturbation in u
that is localized at the origin x=0. For convenience, we take
a perturbation of the form

u�x,0� = u0�x� =
K

�4�s
exp�− x2

4s
	 . �10�

Here K represents the population contained in the perturba-
tion and s represents the degree of localization. We assume
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there is no initial disturbance in v. In many settings, we are
interested in the way that the system develops after a highly
localized stimulus. For this reason, we consider the case in
which s is small, which implies that initially the amplitude of
u is large but highly concentrated near x=0. We note that as
s→0, the initial condition tends to a delta function with
strength K.

At early times and in the case of a highly localized per-
turbation, the curvature of u, and hence the diffusive fluxes,
are large. However, if the source term has a strong nonlin-
earity, then these terms also will be large, and it is unclear
whether diffusion or source terms will dominate the initial
evolution. Initially, v=0 and u is large, so we assume that the
source term has the asymptotic form

g�u,v� 
 − Bu�u�p−1�1 + asymptotically small corrections� .

�11�

Here B�0 and p�0 are constants. We assume that B is
positive to ensure that spatially homogeneous solutions do
not grow unboundedly. If v grows to become O�1� or if u
decreases to become O�1�, then this asymptotic form will no
longer be valid. In order to investigate the relative sizes of
the diffusive and source terms, we approximate the source
terms during early times and near x=0 by its leading order
term. We use this to develop two approximate solutions and
then consider the validity of these approximations.

First, if we neglect the source terms, then the solution is
given by

u�x,t� =
K

�4��t + s�
exp� − x2

4�t + s�	 .

Using this solution, the relative magnitude of the diffusive
terms to the source terms is given by

uxx

�Bup�
= O� �t + s��p−3�/2

Kp−1B
	 .

Initially, this ratio will be large, and the neglect of the source
terms will be valid, if p�3, i.e., if the nonlinearity grows
more slowly than a cubic. Diffusion will continue to domi-
nate until

t 
 B2/�p−3�K2�p−1�/�p−3�,

at which time

u 
 B−1/�p−3�K−2/�p−3�.

However, we should note that when u reaches this value, the
source terms may no longer be dominated by the leading
order term and so the approximation would have broken
down earlier.

Second, if we neglect the diffusion terms, then each loca-
tion evolves independently of solution values at other loca-
tions, and we obtain the solution

u = ��p − 1�Bt + u0
1−p�1/�1−p�.

To ensure that the assumption that diffusion is negligible is
valid, one needs to compare the diffusive and source terms. It
is easy to show that the relative size of the diffusion terms

decreases as time increases and that the relative size of the
diffusion terms is largest at early times, in which case

uxx

�Bup�
= O�K1−ps�p−3�/2

B
	 .

If p�3, then while the expansion �11� remains valid, the
source terms are always bigger than the diffusive terms.

Finally, in the borderline case, p=3, neither the diffusive
terms nor the source terms dominate, and there is a balance
between the two. For this case, the solution can be expressed
in terms of a similarity variable

u =
U�	�
�2Bt

and v =
V�	�
�2Bt

�12�

where

	 �
x

�2t
.

For all sufficiently smooth initial conditions, the solution will
tend to this similarity solution, except possibly at x=0. After
substituting Eq. �12� into Eqs. �1� and �2�, the leading order
equations become

U� + �	 U�� = U3 and DV� + �	V�� = − U3. �13�

The solution is symmetric in 	 and the conditions specifying
the total populations and requiring no population fluxes at
zero and infinity are

�
0

�

�U + V�d	 =
1

2
KB1/2,

U��0� + DV��0� = 0,

and

	 U → 0 and 	V → 0 as 	 → � .

Since the equations �13� decouple, this problem can be
solved readily using a simple numerical shooting technique.
The results for U are shown in Fig. 1 for various values of
KB1/2. As one would expect, as the strength of the nonlinear-
ity becomes weaker, KB1/2→0, the solution profile is more
closely approximated by the diffusive profile in which non-
linear effects do not play a significant role.

A. Single rest state

With the above information, we are able to understand the
initial stage of the evolution of u and v for various values of
p. We begin by considering the case in which there is only a
single rest point �u ,v�= �0,0�. For fixed values of x, we con-
sider the trajectories in the �u ,v� plane �see Fig. 2�. The
solution trajectories will start with v=0, and the segment
0
u
K /�4�s will be doubly covered by the initial condi-
tion. Since we are considering the case in which the initial
disturbance is highly localized �s is small�, the values of u
near x=0 will be large.

Figure 2 shows an example with source term g�u ,v�=v
−u5 that have p�3. Initially, the diffusive terms will be
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negligible, and so the solution will rapidly evolve along lines
of constant u+v �dotted lines�. This will continue until v
becomes sufficiently large and/or u becomes sufficiently
small that the source terms are no longer dominated by the
leading order expression. At this time, the trajectory for x
=0, which represents the largest value of u+v, will have a
value of v that has deviated significantly away from zero.
The trajectories then evolve toward the vicinity of the curve
g�u ,v�=0. In this vicinity, the magnitude of the source terms
are small, and hence the diffusive terms become important.
Points far from x=0 will have remained relatively close to
�u ,v�= �0,0�, whereas points near x=0 will have generally

attained values of u and v that differ significantly from zero.
Hence there will be significant spatial variations in u and v.
Therefore the diffusive fluxes will start to act on the solution
and attempt to flatten any curvature. Diffusion acts to
straighten out any local gradients, but the source terms pre-
vent the trajectories from moving too far away from the
curve g�u ,v�=0. Therefore the diffusive straightening will
force trajectories to slowly evolve along the curve g�u ,v�
=0 to the unique rest state.

For p�3, initially, the source term will be negligible and
the solution will be dominated by diffusion. This is shown in
Fig. 3 for g�u ,v�=v−u. Hence for values of x near zero, the
trajectories will rapidly move along the u axis towards u=0.
This will continue until u is of order B−1/�p−3�K−2/�p−3� or until
the asymptotic corrections in the source terms become sig-
nificant. Following this, there will be a balance between the
source terms and the diffusive terms, and the trajectory will
move partially in the direction of constant u+v. Trajectories
will reach the vicinity of the curve g�u ,v�=0 and then dif-
fusion once again will drive the solution towards the rest
state.

For p=3, initially, the trajectories will move at an angle in
between the u axis and the lines u+v�const. This can be
seen in Fig. 4 where the source term is given by g�u ,v�=v
−u3. For larger values of B, corresponding to larger source
terms, the direction of the trajectories will become more
aligned in the direction of constant u+v. After reaching the
vicinity of the curve g�u ,v�=0, the dynamics are similar to
the first two cases.

From the above results, we see that, for weak nonlineari-
ties, p�3, the dynamics will be dominated by diffusion and
evolve with values of v that stay relatively small. However,
for strong nonlinearities, p�3, the evolution of the solution
will be dominated by the nonlinear source terms and when

FIG. 1. The similarity solution for the case when the nonlinear-
ity in the source term is g�u ,v�=−Bu3. The solution is plotted for
various values of B.

FIG. 2. Trajectories of fixed spatial locations for the initial value
problem with source terms g�u ,v�=v−u5 that initially dominate the
diffusion and have only a single rest state at �u ,v�= �0,0�. The
curve g�u ,v�=0 is plotted as a bold solid line and lines of constant
u+v are plotted as dotted lines. The trajectory that begins at the
largest value of u is at x=0 and neighboring trajectories are sepa-
rated by 0.02.

FIG. 3. Trajectories of fixed spatial locations for the initial value
problem with source terms g�u ,v�=v−u that initially dominate the
diffusion and have only a single rest state at �u ,v�= �0,0�. The
curve g�u ,v�=0 is plotted as a bold solid line and lines of constant
u+v are plotted as dotted lines. The trajectory that begins at the
largest value of u is at x=0 and neighboring trajectories are sepa-
rated by 0.06.
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the solutions evolve into the region where u=O�1�, the typi-
cal values of v will generally be far from zero.

B. Multiple rest states

We are particularly interested in the case in which a stable
rest state is perturbed and two wave fronts propagate away
from the initial perturbation leaving behind a stable rest
state. In this section, we therefore consider the case in which
there are multiple stable rest states. Given a spatially homo-
geneous stable rest state, we wish to determine what types of
initial perturbations cause the region that has been signifi-
cantly perturbed to evolve towards the vicinity of a different
rest state. This will certainly be necessary in order to have
the possibility of triggering traveling wave fronts. We con-
sider source terms that are continuous and, in the absence of
diffusion, do not lead to unbounded states. This means that
the curve g�u ,v�=0 intersects the line u+v�constant at least
once, for any value of the constant. We will focus on the
simplest case in which this can happen, namely when the
curve g�u ,v�=0 intersects the line u+v=0 at three points,
two of which must be linearly stable. We consider three pos-
sible examples of source terms.

We begin by considering the case in which the diffusive
terms are absent. This implies that trajectories at a fixed lo-
cation will evolve along lines of u+v�constant �where the
constant is determined by the initial conditions� until they
reach the curve g�u ,v�=0. For certain values of the constant,
there are three possible steady-state solutions, and therefore
there are three possible branches of the curve g�u ,v�=0.
There are two stable branches �bold solid lines in Fig. 5�, one
passing through �u ,v�= �0,0�, and the other passing through

FIG. 4. Trajectories of fixed spatial locations for the initial value
problem with source terms g�u ,v�=v−u3 that have a nonlinearity
for which diffusive and source terms initially have the same mag-
nitude and only a single rest state at �u ,v�= �0,0�. The curve
g�u ,v�=0 is plotted as a bold solid line and lines of constant u+v
are plotted as dotted lines. The trajectory that begins at the largest
value of u is at x=0 and neighboring trajectories are separated by
0.02.

FIG. 5. Schematics of trajectories at fixed locations when diffu-
sion is ignored and so trajectories are confined to lines of constant
u+v. For different forms of the source terms certain initial condi-
tions can lead to discontinuous profiles.
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the other rest state, and there is an unstable branch in be-
tween �dashed lines in Fig. 5�.

In case I, if we take an initial disturbance in u that has
K�0, then the trajectories at a fixed location will evolve
along lines of constant u+v until they reach the curve
g�u ,v�=0. For K�0, this means that all the trajectories will
reach the same branch of the g�u ,v�=0 curve, and the solu-
tion will be spatially continuous. For this type of disturbance,
no matter how localized or how large the initial strength of
the disturbance, trajectories cannot reach the other branch. If
K�0 and the peak amplitude of the disturbance is suffi-
ciently small, the evolution will follow a similar pattern. In
this case, the solution trajectories also will evolve to the
same solution branch, and the solution will be spatially con-
tinuous.

However, if K�0 and the peak amplitude of the distur-
bance is sufficiently large, the behavior is different. Trajec-
tories associated with locations that were far from the initial
perturbation will evolve toward the initial rest state whereas
trajectories associated with locations that were initially near
the center of the perturbation will evolve to the other solu-
tion branch. This will lead to a final solution that is spatially
discontinuous.

In case II, the behavior is broadly similar to that in case I
except that negative disturbances always evolve towards the
same branch whereas positive disturbances can evolve to-
ward the other branch if the peak disturbance is large
enough.

In case III, we illustrate that more complicated behavior
than in the first two examples can arise. In this case, if the
disturbance is large and negative, then a portion of the dis-
turbance, which may not necessarily include the center, will
evolve towards the other branch.

The addition of the diffusive terms will give rise to two
important differences. First, trajectories will not be confined
to lines of constant u+v. Second, when the trajectories reach
the vicinity of the curve g�u ,v�=0 spatially inhomogeneous
solutions will experience diffusive fluxes that try to make
them more spatially uniform.

If we consider case I with source terms that have a strong
nonlinearity �p�3�, the trajectories in the center of the dis-
turbance move approximately along lines of u+v, and so the
points can reach the vicinity of the other rest state. If K�0
or if K�0 and the peak disturbance is sufficiently small, the
solution will remain on the same branch so that diffusion will
act to bring all the points back to the original rest state. This
is similar to the behavior observed in the case with only a
single rest state in Fig. 2. However, when K�0 and the peak
disturbance is sufficiently large, the trajectories near the cen-
ter of the disturbance may be able to reach the vicinity of the
other branch, whereas locations far from the center of the
disturbance will evolve toward the original branch. We note
that diffusion modifies the direction of trajectories away
from the lines of constant u+v. Therefore the peak amplitude
required to reach the other branch may be somewhat larger
than the case in which diffusion is absent. When the trajec-
tories are close to the curve g�u ,v�=0, the diffusive terms
will become important and will act to straighten out spatial
gradients. The region that was initially in the tail of the per-

turbation will have remained near the point �u ,v�= �0,0�,
whereas the region that was initially in the center of the
perturbation will be closer to the other stable rest state. One
can think of the diffusion terms as acting to “pull” trajecto-
ries along the curve g�u ,v�=0 towards a stable rest point.
Therefore there is a competition between the two different
rest states, and this could lead to the triggering of outward
propagating traveling waves from the center of the perturba-
tion.

On the other hand, if the nonlinearity is weak, that is,
p�3, then trajectories will move approximately along the u
axis. Hence rather than having a chance to experience the
nonlinear effects, trajectories will evolve rapidly back to the
original rest state, and it becomes very difficult for the region
where there was initially a significant perturbation to evolve
toward the other rest state.

In the case of p=3, the trajectories in the far field evolve
at a fixed angle to the lines of constant u+v, so that the
behavior is broadly similar to the case of p�3 except that
the peak amplitude to reach the other branch is larger. We
also note that, even for p�3, a balance between diffusive
and source terms is reached when u
B−1/�p−3�K−2/�p−3� at
which point the trajectories significantly deviate from the u
axis. If the population mass, K, in the disturbance is suffi-
ciently large, then the trajectories may still be able to reach
the other branch. However, unlike the case of strong nonlin-
earities, the unstable branch cannot be reached by making
the disturbance more localized since the peak value of the
disturbance is not important in this case.

IV. TRAVELING WAVES

We now consider the cases in which there are multiple
stable rest states and determine the properties of any result-
ing traveling waves. We again consider the simplest case
with three steady states of which only two can be stable. If
the localized disturbance leads to a replacement of the origi-
nal stable steady state by the other stable steady state, it must
do so by triggering a wave that propagates away from the
initial disturbance. We therefore consider factors that deter-
mine the dynamics of traveling waves.

The existence and direction of propagation of steady trav-
eling waves can be determined by the following analysis.
Suppose a traveling wave front exists in the form u=U���
and v=V��� where �=x−ct and c is the constant wave speed.
Furthermore, suppose that the traveling wave front connects
the stable rest states �U− ,V−� as �→−� and �U+ ,V+� as �
→�. For x�0, �U+ ,V+� will be the initial state and �U− ,V−�
will be the other stable rest state. Then, Eqs. �1� and �2�
become

− cU� = U� + g�U,V� , �14�

− cV� = DV� − g�U,V� . �15�

Adding Eqs. �14� and �15�, we obtain

− c�U + V�� = �U + DV��.

Integrating and applying the boundary conditions, U�→0,
V�→0 and U+V→0 at infinity, we obtain
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− c�U + V� = U� + DV�. �16�

We consider the third-order dynamical system represented
by Eqs. �14� and �16�. Singular points of this system are
obtained by solving U+V=0 and g�U ,V�=0. Any traveling
wave front solution must be a heteroclinic orbit in � that
links the two rest states. We first consider the linear stability
of these singular points with respect to �. Introducing distur-
bances of the form e��, we obtain the following relation for
the eigenvalue �:

D�3 + c�1 + D��2 + �c2 + Dgu± − gv±�� + c�gu± − gv±� = 0.

The partial derivatives gu± and gv± are evaluated at the rel-
evant singular point, namely �U± ,V±�. Since both singular
states are stable with respect to time, it follows from Sec.
II A that gv±−gu±�0 and Dgv±−gu±�0. If c�0, then the
sum of the three roots of the eigenvalue relation �for either of
the stable singular points� is negative and the product is posi-
tive. Hence both singular points must have one unstable and
two stable eigenvalues. If c�0, then the sum of the three
roots is positive and the product is negative. Hence both
singular points must have two unstable and one stable eigen-
value. In both cases, the dimension of the unstable manifold
for one singular point plus the dimensionality of the stable
manifold for the other singular point equals the dimension-
ality of the system. Therefore for an arbitrary value of c, we
do not expect the unstable manifold of �U− ,V−� and the
stable manifold of �U+ ,V+� to coincide. However, we may
generically expect the stable and unstable manifolds to inter-
sect and form a heteroclinic orbit only at discrete values of c.
This is quite different from the case in which the source
terms are not symmetric. In that case there is no such restric-
tion on the dimensionality of the stable and unstable mani-
folds, and heteroclinic orbits can exist for continuous ranges
of the wave speed.

If a heteroclinic trajectory leaves a singular point along a
direction that is not orthogonal to an eigenvector with eigen-
value � �that must be positive�, then its distance along the
eigenvector from the singular point decreases as e�� as �→
−�. A similar conclusion holds for a heteroclinic orbit that
arrives at a singular point. Therefore the smaller the value of
�, the broader the wave front of the traveling wave. As c
→0, one of the eigenvalues, for each singular point, tends to
zero. Hence, for small values of c, one of the eigenvalues for
each singular point also will be small. If a heteroclinic orbit
were to exist that was not orthogonal to the eigenvector as-
sociated with the small eigenvalue, then the width of the
wave front becomes large. Hence one is led to consider the
case c=0 in which both singular points have a zero eigen-
value.

The case of c=0 is special in the sense that a solution
cannot, in general, satisfy both boundary conditions. For c
=0, Eq. �16� becomes �U+V��+ �D−1�V�=0, which can be
integrated to yield �U+V�+ �D−1�V�const. As x→ ±�, U
+V→0 and V→V±. However, these conditions cannot be
satisfied unless D=1, since V+�V−. We conclude that there
are no stationary waves when the diffusivities are different.

A. Almost equal diffusivities

If the diffusivities are equal �D=1�, we can integrate Eq.
�16� and use the boundary conditions as �→ ±� to obtain
U+V=0. Hence Eq. �14� becomes

− cU� = U� + g�U,− U� .

After multiplying by U�, integrating over �, and solving for
c, we obtain

c = −

�
U−

U+

g�U,− U�dU

�
−�

�

U�2d�

.

Since the denominator of the fraction is strictly positive, the
sign of c, and hence the direction of the traveling wave, is
determined by the sign of the numerator. In this case, it is
possible to have a stationary wave, c=0, with finite width.
This can occur because one can show that the constraint U
+V=0 forces the heteroclinic orbit to be orthogonal to the
eigenvector corresponding to the zero eigenvalue at the sin-
gular point.

The question that naturally arises is how is the wave
modified by the presence of different diffusion coefficients
�D�1�. We first consider the case when the diffusion coef-
ficients are almost equal, �D−1 � �1. We propose expansions
of the form

U = U�0� + �D − 1�U�1� + ¯ ,

V = V�0� + �D − 1�V�1� + ¯ ,

c = c�0� + �D − 1�c�1� + ¯ .

At leading order, we obtain U�0�=−V�0� and

U�0�� + c�0�U�0�� + g�U�0�,− U�0�� = 0. �17�

The trajectory must connect the two rest states, and so U�0�
→U± as �→ ±�. If we consider the solution of the above
equation �17� for large ���, then we can linearize the source
terms about each of the two fixed points to obtain

U�0�� + c�0�U�0�� + �gu± − gv±�U�0� = 0.

We note that gv±−gu±�0 because both stationary points un-
der consideration are linearly stable with respect to time. If
c�0�0, then the behavior at large ��� is given by

U�0� − U+ 
 exp� �− c�0� − �c�0�
2 + 4�gv+ − gu+���

2
 as

� → �

and
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U�0� − U− 
 exp� �− c�0� + �c�0�
2 + 4�gv− − gu−���

2
 as

� → − � .

Similar expressions can be obtained for c�0��0. Substituting
into Eq. �16� yields

�U�1� + V�1��� + c�0��U�1� + V�1�� = U�0�� .

This can be integrated and, using the boundary conditions
U�1�+V�1�→0 as �→ ±�, yields

U�1� + V�1� = e−c�0���
−�

�

ec�0�yU�0�� �y�dy �18�

if c�0��0 and

U�1� + V�1� = − e−c�0���
�

�

ec�0�yU�0�� �y�dy �19�

if c�0��0. In the case of c�0�=0, no solution can be found.
Now we consider the total excess population that exists in

a traveling wave. At leading order, this is zero, but at first
order, we obtain

�
−�

�

�u + v�dx = �D − 1��
−�

�

�U�1� + V�1��d� + O�D − 1�2.

After using Eqs. �18� and �19�, and changing the order of
integration, we obtain

�
−�

�

�u + v�dx =
�D − 1��U+ − U−�

c�0�
+ O�D − 1�2.

This gives the net global population change contained in a
traveling wave. This means that for D�1, the population in
the vicinity of the wave front can differ from the population
far from the front.

The mechanism that allows this to happen can be under-
stood by considering the waves in u and v separately, but
remembering that they must travel together and, hence, have
the same wave speed. Suppose that for D=1, there is a wave
propagating with c�0. This wave speed is selected because
it can balance the local mismatches between the diffusion
and source terms that occur in the wave front. If the wave
front in v has width of order w, then the approximate sizes of
the diffusive, source, and wave propagation terms are given
by Du /w2, g�u ,v�, and cu /w, respectively. A simple scaling
analysis shows that w
�D and c
�D. Thus smaller diffu-
sion leads to a narrower wave front that propagates at lower
speed. So if we decrease the diffusivity of v, there is a ten-
dency to decrease the magnitude of the wave speed of the
solution for v. However, the diffusivity of u remains the
same, so the diffusive fluxes in u remain comparable in mag-
nitude. Thus the wave speed of the solution u has a tendency
to stay the same. Any wave front will have to adopt a com-
promise wave speed, and so we expect that v will lag behind
u. When the diffusivities are equal, u+v=0 everywhere, and
there is no lag, but when D�1, v lags slightly behind u, and

so the total population contained in the wave will be domi-
nated by the contribution from u behind the wave front.

We note that as c�0�→0, the population contained in a
traveling wave front for D near unity tends to infinity. This is
because the rate at which the heteroclinic orbit approaches
the fixed points tends to zero. Thus the widths of the travel-
ing waves tend to infinity, and hence the integral diverges.
This explains why we cannot obtain stationary waves for D
�1.

B. Example system with some exact solutions

In order to understand the way in which the wave speed is
affected by changes in the diffusivity D, it is instructive to
consider a particular example. If we choose one of two spe-
cial forms for the source terms, it is possible to obtain exact
solutions to the traveling wave equations for the cases D
=1 and D=0. We choose the simplest form that can allow for
two stable rest states, namely,

g�u,v� = v + u − Bu�u + ���u + 1�

or

g�u,v� = − �v + u� − Bu�u + ���u + 1� ,

where 0���1 and B�0 are constant parameters. These
two special forms are similar to cases I and II in Fig. 5,
respectively. We note that after trivial transformations, these
two cases represent the generic function with three possible
steady states that is linear in v and cubic in u.

For case I, the rest states at �u ,v�= �0,0� and �−1,−1� are
linearly stable if

B min��,1 − �� � max�0,1 −
1

D
	 .

For D=1, U+V=0 everywhere, so that Eq. �14� becomes

U� + cU� − BU�U + ���U + 1� = 0. �20�

The boundary conditions are U→0 as �→� and U→−1 as
�→−�. This can be solved by searching for a solution in the
form

U = − V = −
1

2
+

1

2
tanh���� , �21�

where ��0 is a constant. Substituting Eq. �21� into Eq. �20�
and equating powers of tanh���� yields the solution

� =�B

8
and c = �2B�1

2
− �	 .

Thus the direction of the traveling wave front depends only
on the parameter �.

For zero diffusivity in v, that is D=0, we can eliminate v
in Eq. �16� to obtain

U� + �c −
1

c
	U� − BU�U + ���U + 1� = 0.

This equation is the same as the D=1 case, but with c re-
placed by c−1/c and, hence, can be solved using the same
method to yield

TRAVELING WAVES IN COUPLED REACTION-¼ PHYSICAL REVIEW E 74, 021909 �2006�

021909-9



U = −
1

2
+

1

2
tanh���B

8
	 ,

V =
1

2
−

1

2
tanh���B

8
	 −

B

8c
sech2���B

8
	 ,

and

c =

�B�1

2
− �	 ±�B�1

2
− �	2

+ 2

�2
.

This means that for D=0, there are two possible traveling
waves that propagate in opposite directions. As noted in the
previous analysis, the wave speed c must always be nonzero
since D�1. It is easy to see that the rightward propagating
wave is nonmonotonic if B�1−���1 and the leftward propa-
gating wave is nonmonotonic if B��1. These wave profiles
for V are shown in Fig. 6, for both the leftward and rightward
propagating waves. In addition, we also plot −U on the same
graph to illustrate that the lag between the U and V fields
depends on the direction of the propagation. It should be
noted in the above example that, although there are two
waves in the case D=0, there is only a single wave when
D=1.

For case II, the fixed points at �u ,v�= �0,0� and �−1,−1�
are linearly stable if

B min��,1 − �� � max�0,
1

D
− 1	 .

For D=1, U+V=0 everywhere, so the solution and wave
speed are identical to those for case I.

For D=0, we can use the same procedure to obtain

U� + �c +
1

c
	U� − BU�U + ���U + 1� = 0.

This equation is the same as in the D=1 case in case I, but
with c replaced by c+1/c, and hence

U = −
1

2
+

1

2
tanh���B

8
	 ,

V =
1

2
−

1

2
tanh���B

8
	 −

B

8c
sech2���B

8
	 ,

and

c =

�B�1

2
− �	 ±�B�1

2
− �	2

− 2

�2
.

This means that for D=0, depending on the values of B and
�, there can be two, one, or zero traveling waves. In addition,
if traveling waves of this form exist, then they must have a
wave speed that has the same sign as the wave in the case
D=1.

To further investigate traveling waves for values of D that
differ from zero or unity, we adopt a simple numerical shoot-
ing method for the wave speed. If c�0, then both stationary
points have a one-dimensional unstable manifold. We wish to
find values of c for which the unstable manifold of one of the
singular points coincides with the stable manifold of the
other singular point. For a given value of c, we compute the
eigenvector associated with the unstable eigenvalue. Using
the eigenvector to determine an initial condition that is on
the unstable manifold, we numerically integrate to determine
the entire unstable manifold. We then choose c to minimize
the distance between this unstable manifold and the other
stable rest state. If the minimum distance is zero then this
value of c corresponds to a heteroclinic orbit. If c�0, we
adopt a similar procedure, but start on the stable manifold
and integrate backwards in time.

The results in case I are displayed in Fig. 7 for fixed B
=1 and various values of �1/2. The results for ��1/2
can be obtained by replacing � by 1−� and c by −c. We
immediately see that as D increases, the absolute magnitude
of the wave speed decreases for both of the possible waves.
The absolute magnitude of the wave speeds continues to de-
crease until the wave speed associated with one of the trav-
eling waves approaches zero. In the case of �=1/2 �Fig. 7�,
both traveling waves end at D=1, at which point a stationary
wave exists, and for values of D�1, no traveling waves
exist.

For ��1/2, the results are quite different �Fig. 7, �
=0.6 and 0.7�. In these cases, the left and rightward traveling
waves end abruptly at different critical values of D. The
critical values of D are, in general, not equal to unity. From
the results in Sec. IV, the wave speed cannot equal zero for
D�1. Hence as these critical points are approached, the
wave speed tends to zero and the wave front becomes in-
creasingly wide. For values of D larger than the critical val-
ues, the traveling waves cease to exist.

FIG. 6. Traveling wave solutions for source terms g�u ,v�=v
+u−Bu�u+���u+1� with �=1/2 and D=0 and various values of B.
In this case, there can be two possible traveling waves, both having
the same u profile �dashed line�, but with different v profile �solid
line�. The direction of the propagating waves are indicated on the v
profiles.
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The results in case II are displayed in Fig. 8 for values of
��1/2. In Fig. 8 ��=0.1,B=25�, the value of � is suffi-
ciently far away from 1/2 that B�1/2−��2�2, so that the
wave speeds at D=0 are real, and hence two traveling waves
exist. In Fig. 8 ��=0.2,B=25�, the waves do not exist below
a critical value of D. However, near the critical point, there
are two waves that propagate in the same direction where the
speed of the slower wave decreases as D increases. At a
value of D�1, the wave speed reaches zero, and for values
of D greater than this, only the faster of the two waves exists.
In Fig. 8 ��=0.4,B=25�, there is only a single traveling
wave. The speed decreases as D decreases until it becomes
zero, and for sufficiently small values of D, no traveling
wave exists. For �=1/2, the case of D=1 has zero wave
speed, thus traveling waves only exist for values of D�1.

Finally, the stability and bifurcation properties of these
traveling waves are clearly of interest, but these are beyond
the scope of this paper.

C. Traveling and self-annihilating waves

There is a spectrum of possible qualitative behavior that
can occur for a system of equations �1� and �2� with initial
perturbation �10�. This behavior depends on a number of
factors, including the number of intersections between the
line u+v=0 and the curve g�u ,v�=0, the stability of these
rest states, the peak amplitude of the initial perturbation, the
strength of the nonlinearity, and the existence and stability of
any traveling waves.

We are particularly interested in the case in which the
initial condition evolves into two traveling wave solutions
that propagate away from the initial perturbation. Clearly a
number of conditions must be met. First, the line u+v=0
must intersect the curve g�u ,v�=0 at multiple points. Sec-
ond, the initial disturbance must be large enough and have
the appropriate sign so that trajectories evolve into the vicin-
ity of the other rest state. This can be achieved readily in the

case of a strong nonlinearity �p�3�, but will generally be
significantly more difficult for �p�3�. However, these two
conditions are not sufficient. The region that initially evolves
toward the vicinity of the other rest state must have enough
population to be able to use diffusion to “pull” populations
from the original rest state. Finally, a stable traveling wave
that connects the two rest states and propagates in the appro-
priate direction also must exist.

If these conditions are met, then we have the possibility of
setting up a traveling wave. In Fig. 9, we show results where
the initial value problem satisfies these conditions. The prob-
lem was solved numerically using a standard Crank-Nicolson
algorithm for time stepping with a Newton-Raphson method
to solve the resulting algebraic equations. There is a rapid
initial phase when diffusion is small and trajectories for each
location move approximately along lines of constant u+v
until they are close to the curve g�u ,v�=0. The source terms
in this example are sufficiently strong that the central region
of the disturbance can evolve to become close to the other
rest state. Diffusion then sets up two outward propagating
waves, and as the waves move further apart, each wave front
becomes increasingly close to the solution for an isolated
traveling wave.

An interesting situation occurs when the disturbance is
large enough to push trajectories toward the vicinity of the
other rest state, but in which the only traveling wave that
exists propagates inward �Fig. 10�. In this case, the initial
transient behavior is similar to that in Fig. 9. The initial
disturbance sets up a wave that initially propagates outwards,
but the wave cannot continue to propagate outwards because
no such steady wave exists. Rather, it continuously deceler-
ates as the profile gets closer and closer to the traveling wave
profile. Eventually, after the transient wave has decayed, the
wave propagates inwards until it collides with its mirror im-
age at x=0. When this collision occurs, another rapid tran-
sient phase begins, and the two waves annihilate each other.
The solution then diffusively returns to the initial state.

FIG. 7. The wave speed of traveling waves is plotted against the
diffusivity ratio for source terms g�u ,v�=v+u−Bu�u+���u+1�
with B=1 and values of �=0.5, 0.6, and 0.7.

FIG. 8. The wave speed of traveling waves is plotted against the
diffusivity ratio for source terms g�u ,v�=−v−u−Bu�u+���u+1�
with B=25 and values of �=0.1, 0.2, and 0.4.
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V. DISCUSSION

In this discussion, we will summarize our basic results
and their implications for the generation of traveling waves.
We have derived a number of conditions that must be met in
order for a highly localized perturbation of a stable rest state
of the equations �1� and �2� to evolve towards two traveling
waves that propagate away from the initial perturbation.

A stable traveling wave front will connect the initial
stable rest state to a different stable rest state that has the
same net local population as the original rest state. Such
states can exist only if the curves g�u ,v�=0 and u+v=0
have multiple intersections. For strong nonlinearities �p
�3�, the motion occurs in two separate stages. First, each
location rapidly evolves towards the values of u and v for
which the source terms are zero. At the end of this phase,
values of v will generally be significantly different from
zero. Second, diffusion acts to slowly smooth out local cur-
vature. If the initial perturbations are sufficiently large to
overcome a “triggering barrier,” then the solution can evolve
towards the vicinity of a different rest state. This then can
lead to the development of traveling waves. For weak source

terms �p�3�, the behavior is different. The motion occurs in
a single slowly evolving diffusive phase. The initial pertur-
bation will diffuse until the value of u is sufficiently small
that the source terms will become important. Only then will
v begin to differ significantly from zero, and trajectories
have a possibility to overcome the triggering barrier.

For both weak and strong nonlinearities, if the magnitude
of the initial disturbance is small, then no traveling wave will
be triggered. In the case of a strong nonlinearity, the trigger-
ing problem can be overcome by increasing the stimulus
amplitude, which can be done in one of two ways. First, one
can simply make the size of the population in the initial
impulse large enough so that trajectories near x=0 will
evolve to the portion of the curve near the other rest state.
Second, one can localize the disturbance until the values of
the disturbance near x=0 are large enough. In the case of
weak nonlinearities, localizing the disturbance will not gen-
erally be helpful in overcoming the barrier.

In general, a highly localized large amplitude perturbation
of a stable rest state will lead to the generation of two out-
ward traveling waves. A particularly interesting case arises
when there does not exist an outward traveling wave solu-

FIG. 9. �Color� The values of u and v are plotted against x and
t for an initial-value problem with source terms g�u ,v�=v+u
−Bu�u+���u+1�, B=5, �=0.45, D=0.9, and an initial condition
with K=−0.7 and s=0.05.

FIG. 10. �Color� The values of u and v are plotted against x and
t for an initial-value problem with source terms g�u ,v�=v+u
−Bu�u+���u+1�, B=5, �=0.55, D=0.9, and an initial condition
with K=−0.7 and s=0.05.
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tion. In this case, the initially outward-going waves will slow
down, stop, and then propagate inwards where they will col-
lide with each other. Furthermore, as in many problems with
threshold phenomena, these colliding waves will annihilate
each other.

Although one needs to know the full functional form of
g�u ,v� in order to completely understand the dynamics of
such systems it is interesting to note that a substantial
amount of information can be inferred from the curve
g�u ,v�=0. Experimentally determining the form of g�u ,v� is
a challenging task. However, obtaining information about the
curve g�u ,v�=0 is considerably easier. We note that for spa-
tially uniform initial data, solutions will evolve to a stable
point on the curve g�u ,v�=0 as t→�. Therefore it may be
experimentally possible to map out the stable part of this
curve by performing a set of experiments that take an array
of spatially homogeneous initial points in the �u ,v�-space
and determining the set of points to which they evolve. For a
given initial rest state, one can easily determine whether the
curve g�u ,v�=0 and the line u+v=0 have multiple intersec-
tions. If multiple intersections exist, then the system is a
candidate for obtaining the types of waves described in this

paper. One also can determine the sign of initial disturbances
that can possibly lead to the development of traveling waves
�see Fig. 5�.

In addition, when choosing initial disturbances that can
trigger traveling waves, it is useful to know whether the
source terms are strong �p�3� or weak �p�3�. This can be
determined by performing an experiment with a highly local-
ized initial disturbance in u and measuring the values of u
and v at the center of the disturbance. If the disturbance
initially evolves approximately along lines of constant u+v
then the source terms are strong, whereas if v remains ap-
proximately constant during the initial evolution then the
source terms are weak. If p�3, then one can obtain a rough
approximation of the magnitude of the peak disturbance re-
quired to overcome the triggering barrier �see Fig. 5�.
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